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rupture occurs to the left of (1.19) only when the curves (2.11) and (2.17) drop and shrink 
to the "triple" point y = Zy,, M = tg Zy,. The line (2.9) which will shift to the left as 
(J, decreases will be the boundary separating the solution with rupture from the solution 
without rupture. 

Thus, for very large values of a* rupture is possible only in the second and third 
regimes for high impact velocities, the curve of the limit states is in the domain of large 
values of M. As c* decreases, this curve drops montonically, and for a certain IJ* shrinks 
into a triple point. As cr decreases further, it is transformed into the segment of a line 
(2.9) which tends to the axis M as u*+ 0. 

The solution of corresponding problems on the impact of a cone on a membrane can be con- 
structed by exactly analogous methods by using the singularities of the solution at the break 
point of the structure and the sbheme taken for the rupture process. 

The results obtained here can be utilized in the general case of non-selfsimilar problems 
with curvilinear outlines of the impacting body surface. 
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ON THE THEORY OF LONG WAVES IN AN INCLINED CHANNEL* 

A.M. TER-KRIKOROV 

A method resembling the asymptotic small-parameter me+hod /I-3/,is used 
to study.the long steady waves in an inclined channel, with the waves 
degenerating into solitons as their length tends to infinity. By 
analogy with the theory of stability of elastic rods, the process of 
transition from one-dimensional steady flow to two-dimensional flow, can 
be represented as instantaneous, with the result that all rectilinear 
stream lines becomes curved, but the values of the Froude and Reynolds 
numbers remain the same. It is shown that solutions of this type can 
exist, provided that the velocity of wave propagation and the value of 
the Reynolds number are nearly critical. Simple formulas are obtained 
for the wave profile, and the dependence of the wave propagation on the 
amplitude. If the Reynolds number is small and the angle of inclination 
of the channel is nearly n/2. the same formulas hold even without the 
assumption that the Reynolds number is nearly critical. The method opens 
up the possibility of proving existence and uniqueness theorems by analogy 
with /l-3/. Technical difficulties arise in connection with the estimates 
for Green's function for the biharmonic operator. 

1. Formulation of the problem. Consider the two-dimensional steady flow of a 
homogeneous, incompressible heavy viscous fluid with a free boundary, over a rectilinear bottom 
inclined at an angle a to the horizontal. We shall assume that the two-dimensional flow 
is caused by instantaneous loss of stability of a one-dimensional flow characterized by the 
Reynolds number R =Q/Y and Froude number F = gHVQ" (Q is the flow rate and H is the depth 
of the stream. We shall write the equations of motion in a coordinate system moving in a 
direction parallel to the channel bottom with wave velocity c. The origin of coordinates 
is chosen at the free unperturbed boundary, and the y axis is parallel to the force of gravity. 
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The rate of flow is determined in the fixed coordinate system. 
We have the following formulas for the velocity of one-dimensional flow /4/: 

a(91=~(,,2-1)+C=~(~2+).), 5=+-l (1.1) 

(tl is the ordinate). We also introduce the following stream function for one-dimensional 
flow: 

If h> 0, then a(q)> 0 and the following inverse function exists: 

(1.2) 

2. Transformation of the equations of two-dimensional flow. Introducing the 
stream function $(x, Y) for the two-dimensional flow and using the relation FR sinc = 3 141. 
we can write the Ravier-Stokes equations in the form 

The tangential stresses at the free boundary Y = y (5) must be equal to zero. We shall 
write this condition in the form 

Y = y (.r), 
2 i + Y'(.q azrp 

P”X i-Yt~)x azay 
aq bq 4)"(z) --_- 
ayz d+= i - y’ py 

arg _ o 
az au 

(2.2) 

The free boundary and the bottom must represent the stream lines, and the condition of 
adhesion must hold at the bottom 

3 (I, y (xl) = 0, 9(x, I)=++ $h, $+,l)=c (2.3) 

The difference encountered in the course of solving the non-linear boundary value problem 
(Z-1)-(2.3) are caused by the fact that the free boundary Y = y (4 is not known and must 
be determined during the solution. The problem becomes more complicated in the non-steady 
and the three-dimensional case, and also when the surface tension at the free boundary is 
taken into account. 

We note that the formulation of the problem (2.1)-(2.3) contains several parameters, 
and all asymptotic methods of constructing an approximate solution are based on certain 
a priori assumptions concerning the form of the functional dependence of the solution on the 
parameters. Usually the solution is sought in the form of a formal series in powers of a 
small parameter whose choice is dictated by physical considerations. The formal series will 
be asymptotic for the exact solution only when the small parameter is correctly chosen. 

In a number of papers (/5-7/etal)' the Korteweg-de Vries method was used to deal with 
the problems of waves formed when a viscous film flowed down an inclined plane. The Korteweg- 
de Vries type equations were used in /7-9/ to study the stability of a one-dimensional flow 
and of the steady, two-dimensional, periodic and soliton-type solutions. Other references 
of similar type can be found in /S-9/. In /lo/ a formal expansion in terms of a small 
parsmeter was applied to the stationary system (2.1) -_(2.3) under the assumption that the 
Reynolds number was small and UX=_/~, but correct formulas for the wave profile and the 
dependence of the rate of propagation on the amplitude were not obtained. 

Below we use the method of /11, 12/, which is based on reducing the problem (2.1)-(2.3) 
to a boundary value problem for a region with a known boundary. 

Ry virtue of the conditions (2.3) written in terms of the independent variables x, $ 
a rectilinear strip corresponds to the region of flows. It is convenient to replace the 
independent variable 1) by the independent variable q connected with $ by the relation 

(1.2). Then the strip --a;)<r<+m,O~;~'--1 will correspond to the region of flow, 
while the ordinate Y (5, ?) will become the dependent variable. Differentiating the identity 

Y (1, rl (lli (I, Y))) = Y? we obtain the relations 

(2.41 
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Since by virtue of (1.1)~ (1) = c, we obtain from (2.3) the boundary conditions for Y(s, q) 

y (2, 1) = Y, (XV 1) =f (2.5) 

If we now take the function o (Z,n), expressed in terms of a,(~, n) as follows: 

(2.6) 

0 (5, 1) = q (5, 1) = 0, cp (u) = emu -1 + u 

as the dependent variable, the boundary conditions (2.5) will be satisfied. 
We can now reduce the system of Navier-Stokes equations (2.1) and boundary conditions 

(2.2) to the solution of an integrodifferential equation with the initial condition when 11~ 0 

-= :I0 3V ij~)~1-2a(~~g+).(y)exp :-(+),’ 

t win-. uo=ax(Y)exp(-_a,), u=2ih 

(2.7) 

Relation (2.6) gives the expression for Y in terms of 0. The boundary conditions 
for o(z,n) are given in (2.6), and z(Y) is given by (2.4). 

We note that the equations and boundary conditions are invariant with respect to the 
displacement in the indepent variable x; therefore the solution is also obtained apart from 
the displacement. To remove this indeterminancy, we shall require the y axis should pass 
through the maximum and minimum of the profile of the free boundary. This leads to the 
following condition: 

Y, (0, 0) = 0 

We shall also separate the linear parts of the operators F (Y) and x (~1 

(2.8) 

(2.9) 

3. Constructing an approximate solution. The form of the equation and boundary 
conditions (2.7) and (2.6) enables us to apply the general scheme of constructing the long- 
wave theory /l-3/. Neglecting in the equations and bounary conditions the non-linear terms 
and terms containing derivatives in x, we arrive at the following eigenvalue problem: 

v” (I]) = 0, L:)l (0) - pov (0) := 0. u (1) = u’ (1) = U 

It can be confirmed that problem (3.1) has a unique eigenvalue 

PO=?, Q(n)= $(ll- l)Z=ao - 311, aO=+(Il? + 

From the relation p = 2/i. it follows that 

h0=&=1, c,+l+h,)=3 

Thus the critical wave propagation velocity is equal to three, 
result obtained in /lo/. 

(3.1) 

and eigenfunction 

1) (3.2) 

which agrees with the 

We shall assume that the angle of inclination of the channel bottom satisfies the con- 
dition c> co> 0. Let us write p = 2 - E, R = R, + ERR. 

The small parameter E characterizes the nearness of the velocity of propagation to its 
critical value, since 
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e+1++3+3C 4 - 2E 
The critical value of the Reynolds number R. will be found below. 
Following the long-wave theory we shall expand the independent variable x and seek the 

solution in the form of a series in powers of the parameter 1/m 

I = % (e: I’/., 0 = 1 E 1 ox + 1 E 1'50~ + 18 lzfof + . . . (3.3) 

Substituting the expansion (3.3! into the equations and boundary conditions (2.6), (2.7), 
we obtain a sequence of boundary value problems for determining the functions Oi(%, q). For 
01 we obtain the following boundary value problem: 

By virtue of (3.1) and (3.2) its solution has the form 

01 (5, 9) = C (5) uo (11) (3.4) 

where C(%) is an unknown function which will have to be determined from the subsequent 
approximations. 

We obtain the following boundary value problem for determining 02: 

+- R,(+ a0 - aO’al 

C(%)E(q), E(+3ctga-+z?R,(1-T+) 

%(%,O)- 20*(%,0)=0, Oz(%, 1)= 2(%, 1)s 0 

Simple calculations prove the validity of the following lemma. 

(3.5) 

Lelllllld. Let f (11) be a function continuous in the interval [O,l], and let cc be a real 
number. The inhomogeneous boundary value problem 

d3v.!d$ = f (q), u” (0) - 2u (0) = a, v (1) = v’ (1) = 0 

is solvable if and only if the condition 

1 
a + ~(l-L~)j(t)dl=o (3.6) 

holds. 
Applying the lemma to the boundary value problem (3.5), we obtain the condition of its 

solvability in the form 

[(i- P)E(t)dt =O 
cl 

Substituting the expression for the function E(t)and (3.5) we find that the critical 
value of the Reynolds number is R,, = 6/a~tga, and the one-dimensional flow loses its stability 

at this value (see e.g. /8/j. If we take the maximum velocity of the unperturbed flow as the 
unit velocity instead of the mean velocity, then R. = s/,ctga. 

We obtain the following expression for the function oz: 

oq (E, q) = c’ (%) 6 (q) i D (5) uo (rl). 6 (rl) =& (29 - 9’ - tl) (3.7) 

where D (5) is a new unknown function. Thus the second approximation equations yield the 

critical value of the Reynolds number, but not the unknown function C(%). 
Let us now formulate the boundary value problem for determining the function 03 (E? rl). 

Using expressions (3.4) and (3.71, we obtain the following formulas for the functions ol(%,$ 

and UP (f, rl): 

~=A(~)C(%)2+B(~)C"(%)+E(9)D'(%) 

os(%,1) = T-- 
ao,(I. 1) _ o 

*o,(E.O) 3 
~-203(%,0)1~--sgneC(%)+ 

A(q~=,,++ 

-+c.(%) 

48 ‘la (3 - rl"P 
(1 + (195 

(3.8) 
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Applying the condition of solvability (3.6) to problem (3.81, we obtain a differential 
equation for determining the unknown function C(%). We must remember here that the function 

E (rl) is orthogonal to the function (I- q2) 

QC" (E) + a&' (&) -t" e,C (E) = 0 (3.9) 

3 
us=- 2 sgns 

The second integral. in (3.9) is obtained by substitution II= tg(p/2. 
Let us turn our attention to the fact that the coefficients of (3.9) are independent of 

the angle of inclination OL of the channel bottom. Equation (3.9) has the form C" ce, + 
$!&2(%)= liasgn & (%) and has been studied more than once (see e.g. /l-3/). Periodic solutions 

exist only when s> 0, and can be expressed in terms of the elliptic Jacobi function cn(%, k). 
When k-t-1, and hence when the period tends to infinity, the periodic solution degenerates 
into a periodic (a soliton). In this case we have 

Cf%)=lseeh2 (+) 

The formulas for the free boundary and velocity propagation have the form 

and in dimensional variables 

(3.10) 

(3.11) 

(3.12) 

Since the solutions of (3.9) are obtained apart from the displacement, we choose the 
solution satisfying the condition (2.8). 

We find that to a first approxtiation the wave profile and its velocity propagation depend 
only on the dimensionless amplitude and are independent of the angle of inclination of the 
channel bottom and the Reynolds number. This is explained by the relation connecting the 
parameters: FR sin a = 3, R = 6/s ctg a -/- 0 (E), c = 3 i 0 (S). 

The first formula of (3.12) can be obtained from the expression for the wave profile 
given in /5/. 

4. Constructing the subsequent approximations. 
problem (3.8) we obtain 

Solving the boundary value 

0s (%* 4) = cp (EY q) + D' (%) 6 (rl) + K (E) uo 01) 

where the function rp(%,q) is known,thefunction 
a new unknown function. 

S(q) is given by Eq.(3.7), and K(%) is 
The boundary value problem for determining o, has the form 

aa0 
~=27i~),(~),-4a,(~)~,(~),-2~+ 

~~~=~~-~~~*~~z~tg~~- 

@;$$ + Q(%,V), cQ(%, 1,=- = 0 

J~Wr(S.0) - -2no*(%* O)= - SgllEWB (%,O) + * -+" (Pe(%) dlj' 

where cpl(%. 9) and (P,,(E) are known functions. 
will be polynomials in C(E). 

It can easily be shown that these functions 
Using the condition of solvability of (3.6) we obtain the 

equation for determining the unknown function D (5) 

D” (5) -i -&%P(%) - + sgn ED (5) = p (5) (4.1) 

where 11, (E) is a known function (a polynomial in C (%))a 
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Equations of type (4.1) were studied in /l-3/. The relation Yr = C’(i), represents one 
particular solution of the homogeneous equation, and the other (Y2) 
of Liouville's formula. If C(6) 

can be found with help 
is a periodic solution of (3.9), we have 

B5C' G), where 5 (5) 
Yz (5) = 5 (E) -I- 

is an even periodic function and B is a constant depending on the 
period. The periodic solution of (4.1) satisfying the condition D'(O) = 0, has the form 

~tI)=Yz(5)~~(1)Y1(t)dt--Y1(E)~P(~)Yzi~)dt+ -@- ‘s $(1)y2(1)dt 
‘ 0 --I, 

Note that in order to construct further approximations, we shall have to solve Eq.(4.1) 
every time, but with different right-hand sides. 

Thus we can construct, one after the other, all terms of the series (3.3) which, generally 
speaking, will not converge. By analogy with the long-wave theory in a perfect fluid, we can 
expect that it will be uniformly asymptotic for the exact solution as E ,‘o. 

We also note that if the Reynolds number is small and the angle of inclination a is 
nearly n/2, or more accurately ctga = o (E), R = o (e) as E +O, then the solution of the 
problem must be sought in the form of a series in integer powers of the parameter e, o = &a1 $ 

&%I* -t . . . . To a first approximation we have or&n) = C(@v,, (n), where the unknown function 
c (f) is found from the second approximation equations. The equations for determining 02(t, 

11) have the form (3.8), provided that we write in these equations ctga = 0. The equation 
for determining the free boundary will retain the form (3.12), but in this case it will no 
longer be necessary to satisfy the relation R = s/a ctga connecting the Reynolds number with 

the angle of inclination. For small angles of inclination and large Reynolds numbers another 
asymptotic. theory will have to be developed, related to bounday layer theory, but this problem 
will not bh considered here (see e.g. /13/. 

5. Some thoughts on the proof of the theorems of existence and uniqueness. 
A general scheme for proving the theorems of existence and uniqueness of long waves degenerat- 
ing into solitons as the wavelength tends to infinity, was developed in /l-3/. The scheme 
can be used, after some modifications, in the theory of oscillating waves, but the technical 
complications become greater. 

Let US retain in (2.7) only the linear and quadratic terms not containing the derivatives 
in x. We shall assume for simplicity that the Reynolds number is small (therefore the angle 
a will be nearly X/2). Thus we neglect in (2.7) terms containing R and ctg a. Taking 
into account (2.9) we obtain 

The problem of solving the integrodifferential equation (5.1) with boundary conditions 
(5.2) and (2.6), can be replaced by the equivalent boundary value problem for a fourth-order 
differential equation, Differentiating (5.1) with respect to 11, we obtain 

A% = + (Ld (5.31 

where A is the Laplace operator, Substituting into (j,i)l1 = 0, we obtain the boundary con- 

ditions 
3% _ 3 &II 
Q3 

0~~.&0, n=o (5.4) 
&dr) 

Thus we have to solve the fourth-order equation (5.3) with boundary conditions (5.2), 
(5.4) and (2.6). 

Similar problems for some classes of elliptic second-order equations were studied in 
/l-3/ using the method of splitting based on projecting the function o onto the direction 
of the eigenfunction "0 (n) and its orthogonal complement. Since equation (5.3) contains 

mixed derivatives and the corresponding non-selfconjugate differential operators, it follows 
that the method cannot be applied directly to equation 15.3). 

We can follow the more complex method used in /ll, 12/. We shall consider, to be specific, 

the case of a solitary wave. Let us consider a linear, inhomogeneous boundary value problem 



for a biharmonic operator in the strip -oo<z<+ m, O<n< 1 
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(5.5) 

ast4(2,0) @u (=, 0) 
7-7 -Zu(r,O)=q,(x) 

where ~(2) and f(z,q) are fairly smooth functions decreasing exponentially as x--rco. 
If we construct Green's function for problem (5.5)‘ we can reduce the non-linear 

(5.3) to a non-linear integrodifferential equation. Applying a Fourier transformation, we 
can express Green's function of problem (5.5) in terms of a contour integral of a meromorphic 
function with a multiple pole at the zero. Using the theory of residues, we can represent 
Greens' funqtion in the form of the sum of a certain series all of whose terms (expect the 
first corresponding to the residue at the zero) decrease exponentially at infinity. The 
splitting oftheintegrodifferential equation will correspond to the splitting of Green's 
function. Further proof can be carried out using the scheme in /l-3/. The technical com- 
plications are considerable, but can be overcome. 
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